On Laplacian Eigenvalues of a Graph

Bo Zhou

Department of Mathematics, South China Normal University, Guangzhou 510631, P.R. China

Reprint requests to B. Z.; e-mail: zhoubo@scnu.edu.cn

Z. Naturforsch. **59a**, 181 – 184 (2004); received November 11, 2003

Let G be a connected graph with n vertices and m edges. The Laplacian eigenvalues are denoted by $\mu_1(G) \geq \mu_2(G) \geq \cdots \geq \mu_{n-1}(G) > \mu_n(G) = 0$. The Laplacian eigenvalues have important applications in theoretical chemistry. We present upper bounds for $\mu_1(G) + \cdots + \mu_k(G)$ and lower bounds for $\mu_{n-1}(G) + \cdots + \mu_{n-k}(G)$ in terms of n and m, where $1 \leq k \leq n-2$, and characterize the extremal cases. We also discuss a type of upper bounds for $\mu_1(G)$ in terms of degree and 2-degree.

Key words: Laplacian Eigenvalue; Line Graph; Bipartite Graph.

1. Introduction

Let G=(V,E) be a simple finite, undirected graph with a vertex set V and an edge set E. For $u\in V$, the degree of u is denoted by $d_u(G)$ (or d_u). Let A(G) be the (0,1) adjacency matrix of G and D(G) the diagonal matrix of vertex degrees. It turns out that the Laplacian matrix of G is L(G)=D(G)-A(G), and L(G) is positive semidefinite and singular. A Laplacian eigenvalue of G is an eigenvalue of L(G). Denote the Laplacian eigenvalues of G by $\mu_1(G) \geq \mu_2(G) \geq \cdots \geq \mu_{n-1}(G) \geq \mu_n(G) = 0$. It is well known that $\mu_{n-1}(G) > 0$ if and only if G is connected. In the following we also write μ_i for $\mu_i(G)$ when G is given.

Laplacian eigenvalues play a significant role in theoretical chemistry. For example, the Wiener topological index W of alkanes can be express as $W = n \sum_{i=1}^{n-1} 1/\mu_i$, while within the Heilbronner model, the ionization potentials of alkanes are expressed as $\alpha + (\mu_i - \beta)$, $i = 1, 2, \ldots$, where α and β are pertinently chosen semiempirical constants [1]. In this article, we present upper bounds of the sum $\mu_1 + \cdots + \mu_k$ and lower bounds for the sum $\mu_{n-1} + \cdots + \mu_{n-k}$ in terms of n and m with $1 \le k \le n-2$, and discuss a type of upper bounds of μ_1 .

2. Sums of Laplacian Eigenvalues

For $1 \le k \le n-2$, let $M_k(G) = \mu_1(G) + \cdots + \mu_k(G)$ and $N_k(G) = \mu_{n-1}(G) + \cdots + \mu_{n-k}(G)$. In this section we are interested in finding upper bounds of $M_k(G)$ and lower bounds of $N_k(G)$ in terms of n and m.

Lemma 1 [2]: Let G = (V, E) be a graph with n ver-

tices and m edges. Then

$$\sum_{u \in V} d_u^2 \le m \left(\frac{2m}{n-1} + n - 2 \right).$$

Moreover, if G is connected, then equality holds if and only if G is either a star $K_{1,n-1}$ or a complete graph K_n .

Theorem 1: Let G be a connected graph with n vertices and m edges. Then for $1 \le k \le n-2$

$$M_k(G) \le \frac{2mk + \sqrt{mk(n-k-1)(n^2-n-2m)}}{n-1}, (1)$$

and equality holds if and only if G is either a star $K_{1,n-1}$ or a complete graph K_n when k = 1, and G is a complete graph K_n when $2 \le k \le n-2$.

Proof: Let $M_k = M_k(G)$. Clearly

$$\mu_1 + \mu_2 + \cdots + \mu_{n-1} = \sum_{u \in V} d_u = 2m,$$

$$\mu_1^2 + \mu_2^2 + \dots + \mu_{n-1}^2 = \sum_{u \in V} (d_u^2 + d_u) = 2m + \sum_{u \in V} d_u^2.$$

Then, by the Cauchy-Schwarz inequality, we have

$$(2m - M_k)^2 = (\mu_{k+1} + \dots + \mu_{n-1})^2$$

$$\leq (n - k - 1) \left(\mu_{k+1}^2 + \dots + \mu_{n-1}^2\right)$$

$$= (n - k - 1) \left(2m + \sum_{u \in V} d_u^2 - (\mu_1^2 + \dots + \mu_k^2)\right)$$

$$\leq (n - k - 1) \left(2m + \sum_{u \in V} d_u^2 - \frac{1}{k} M_k^2\right).$$

It follows that

$$M_k \leq \Big\{2mk + \Big[k(n-k-1)\big((n-1)(2m + \sum_{u \in V} d_u^2)$$

$$-4m^2$$
) $]^{1/2}$ $\}/(n-1).$

By Lemma 1, (1) follows from the above inequality.

Now suppose the equality in (1) holds. Then, from the above proof, we have $\mu_1 = \cdots = \mu_k$ and $\mu_{k+1} = \cdots = \mu_{n-1}$ by the Cauchy-Schwarz inequality and G is either a star $K_{1,n-1}$ or a complete graph K_n by Lemma 1. Note that $\mu_1(K_{1,n-1}) = n$, $\mu_2(K_{1,n-1}) = \cdots = \mu_{n-1}(K_{1,n-1}) = 1$ and $\mu_1(K_n) = \cdots = \mu_{n-1}(K_n) = n$. Hence if k = 1, then G is either a star $K_{1,n-1}$ or a complete graph K_n , and if $1 \le k \le n-1$, then $1 \le k \le n-1$, then $1 \le k \le n-1$.

Conversely, it is easy to see that equality in (1) holds if G is a star $K_{1,n-1}$ or a complete graph K_n when k = 1, and G is a complete graph K_n when $2 \le k \le n-2$. \square

Similar arguments lead to the following:

Theorem 2: Let G be a connected graph with n vertices and m edges, $m > \frac{n-k-1}{n+k-1} \binom{n}{2}$ and $1 \le k \le n-2$. Then

$$N_k(G) \ge \frac{2mk - \sqrt{mk(n-k-1)(n^2 - n - 2m)}}{n-1},$$
 (2)

and equality holds if and only if G is either a star $K_{1,n-1}$ or a complete graph K_n when k = n-2, and G is a complete graph K_n when $1 \le k \le n-3$.

Remark 1: Both

$$M_k(G) \le \Big\{ 2mk + \Big[k(n-k-1) \Big((n-1)(2m + \sum_{u \in V} d_u^2) \Big) \Big\} \Big\}$$

$$-4m^2$$
) $^{1/2}$ $/(n-1)$ (3)

and

$$N_k(G) \ge \Big\{2mk - \Big[k(n-k-1)\big((n-1)(2m + \sum_{u \in V} d_u^2)\big)\Big\}$$

$$-4m^2$$
) $^{1/2}$ $/(n-1)$ (4)

have been obtained in [3], Theorem 14. From the proof in Theorem 1 it is easy to see that the equality in (3) holds if and only if $\mu_1(G) = \cdots = \mu_k(G)$ and $\mu_{k+1}(G) = \cdots = \mu_{n-1}(G)$, while the equality holds in (4) holds if and only if $\mu_1(G) = \cdots = \mu_{n-k-1}(G)$ and $\mu_{n-k}(G) = \cdots = \mu_{n-1}(G)$.

Remark 2: Let *G* be a connected graph with *n* vertices and *m* edges, $1 \le k \le n - 2$. By Theorem 1

$$\mu_1(G) \le \frac{2m + \sqrt{m(n-2)(n^2 - n - 2m)}}{n-1},$$

and equality holds if and only if G is either a star $K_{1,n-1}$ or a complete graph K_n (which has been obtained in [2]). By Theorem 2, if m > (n-1)(n-2)/2,

$$\mu_{n-1}(G) \ge \frac{2m - \sqrt{m(n-2)(n^2 - n - 2m)}}{n-1}$$

and equality holds if and only if G is a complete graph K_n .

Remark 3: Since the upper bounds for the first Zagreb-Group index or Gutman index, $\sum_{u \in V} d_u^2$ in Lemma 1 can be sharpened [4], we can get better upper bounds for $M_k(G)$ and lower bounds for $N_k(G)$ by (3) and (4).

Now we consider a bipartite graph.

Lemma 2: Let G = (V,E) be a connected bipartite graph with n vertices and m edges. Then

$$\sum_{u \in V} d_u^2 \le mn,$$

and the equality holds if and only if G is a complete bipartite graph.

Proof: For any edge vw of G, $d_v + d_w \le n$. Then $\sum_{u \in V} d_u^2 = \sum_{vw \in E} (d_v + d_w) \le mn$. The equality holds if and only if $d_v + d_w = n$ for any edge vw of G, i. e., G is a complete bipartite graph.

Theorem 3: Let G be a connected bipartite graph with n vertices and m edges, $1 \le k \le n-2$. Then

$$M_k(G) \le \frac{2mk + \sqrt{mk(n-k-1)(n^2 + n - 2 - 4m)}}{n-1},$$
(5)

and equality holds if and only if k = 1 and G is either a $K_{1,n-1}$ or a $K_{n/2,n/2}$.

Proof: By (3) and Lemma 2, (5) follows.

Suppose equality in (5) holds. Then $d_1^2 + d_2^2 + \cdots + d_n^2 = mn$ and hence, by Lemma 2, G is a complete bipartite graph, say $K_{r,n-r}$ with $1 \le r \le \lfloor n/2 \rfloor$. It is easy to see that $\mu_1 = n, \mu_2 = \cdots = \mu_r = n-r, \mu_{r+1} = \cdots = \mu_{n-1} = r$ and $\mu_n = 0$. By Remark 1, $\mu_1 = \cdots = \mu_k$ and $\mu_{k+1} = \cdots = \mu_{n-1}$. We have either k = 1 and r = 1 or

k=1 and r=n-r ($r \ge 2$). Hence k=1 and G is either a $K_{1,n-1}$ or a $K_{n/2,n/2}$.

Conversely, if k = 1 and G is either a $K_{1,n-1}$ or a $K_{n/2,n/2}$, then clearly equality in (5) holds.

Similar arguments lead to

Theorem 4: Let G be a connected bipartite graph with n vertices and m edges, $m > \frac{(n-k-1)(n+2)}{4}$ and $1 \le k \le n-2$. Then

$$N_k(G) > \frac{2mk - \sqrt{mk(n-k-1)(n^2 + n - 2 - 4m)}}{n-1}.$$
(6)

Remark 4: Let *G* be a connected bipartite graph with *n* vertices and *m* edges. By Theorem 3

$$\mu_1(G) \le \frac{2m + \sqrt{m(n-2)(n^2 + n - 2 - 4m)}}{n-1},$$

and equality holds if and only if G is either a $K_{1,n-1}$ or a $K_{n/2,n/2}$.

3. A Type of Upper Bound for $\mu_1(G)$ in Terms of Degree and 2-degree

The 2-degree [5] of a vertex u in a graph G, denoted by $t_u(G)$ (or t_u), is the sum of degrees of vertices adjacent to u. For u, v in a graph G, $u \sim v$ means u and v are adjacent in G. Let L_G be the line graph of a graph G. An eigenvalue of G is an eigenvalue of A(G). The spectral radius $\rho(G)$ of G is the largest eigenvalue of G.

Among the known upper bounds of $\mu_1(G)$ in terms of degree and 2-degree are the following:

1. Merris's bound [5]:

$$\mu_1(G) \le \max\left\{\frac{d_u^2 + t_u}{d_u} : u \in V\right\}. \tag{7}$$

2. Li and Zhang's bound [6]:

$$\mu_1(G) \le \max \left\{ \frac{(d_u^2 + t_u) + (d_v^2 + t_v)}{d_u + d_v} : uv \in E \right\}.$$
(8)

When G is connected, it is known [7] that equality in (7) or (8) holds if and only if G is a semiregular bipartite graph.

Lemma 3 [8]: Let G be a connected graph with an adjacency matrix A. Let P be any polynomial and $S_u(P(A))$ the row sum of P(A) corresponding to vertex $u \in V$. Then $P(\rho(A)) \leq \max\{S_u(\rho(A)) : u \in V\}$,

equality holds if and only if the row sums of P(A) are all equal.

Lemma 4 [9]: Let G be a connected graph. Then $\mu_1(G) \leq 2 + \rho(L_G)$, and equality holds if and if G is a bipartite graph.

Theorem 5: Let G = (V,E) be a connected graph. Then

$$\mu_1(G) \le \min\{2 + \sqrt{D_1}, \sqrt{D_2}\},$$
(9)

where $D_1 = \max\{d_u^2 + d_v^2 + t_u + t_v - 4(d_u + d_v) + 4 : uv \in E\}$ and $D_2 = \max\{d_u^2 + d_v^2 + t_u + t_v : uv \in E\}$.

Proof: Let *A* and A_L be the adjacency matrices of *G* and L_G . It is easy to see that $S_v(A) = d_w$ and $S_w(A^2) = t_w$ for any $w \in V$. For any $e = uv \in E$

$$\begin{split} S_e(A_L^2) &= t_e(L_G) = \sum_{f \sim e} d_f(L_G) \\ &= \sum_{\substack{x \sim u \\ x \neq v}} (d_x + d_u - 2) + \sum_{\substack{x \sim v \\ x \neq u}} (d_x + d_v - 2) \\ &= (d_u - 2)(d_u - 1) + \sum_{x \sim u} d_x - d_v \\ &+ (d_v - 2)(d_v - 1) + \sum_{x \sim v} d_x - d_u \\ &= d_u^2 + d_v^2 - 4(d_u + d_v) + t_u + t_v + 4. \end{split}$$

By Lemma 3,

$$\rho^{2}(L_{G}) \leq \max\{d_{u}^{2} + d_{v}^{2} - 4(d_{u} + d_{v}) + t_{u} + t_{v} + 4: uv \in E\}$$

and hence by Lemma 4,

$$\mu_1(G) \le 2 + \rho(L_G) \le 2 + \sqrt{D_1}$$
.

On the other hand, note that $S_e(A_L) = d_e(L_G) = d_u + d_v - 2$. We have

$$S_e(A_L^2 + 4A_L + 4I) = d_u^2 + d_v^2 + t_u + t_v.$$

By Lemma 3,

$$\rho^{2}(L_{G}) + 4\rho(L_{G}) + 4 \le \max\{d_{u}^{2} + d_{v}^{2} + t_{u} + t_{v} : uv \in E\},$$

and hence by Lemma 4,

$$\mu_1(G) \leq 2 + \rho(L_G) \leq \sqrt{D_2}$$
.

Thus we have proved that

$$\mu_1(G) \leq \min\{2 + \sqrt{D_1}, \sqrt{D_2}\}.$$

Remark 5: The inequality $\mu_1(G) \leq \sqrt{D_2}$ has been obtained in [10], and it implies that $\mu_1(G) \leq \max\{\sqrt{2d_u+2t_u}: u \in V\}$, which has also appeared in [2]. From the above argument and by Lemmas 3 and 4, we see that $\mu_1(G) = 2 + \sqrt{D_1}$ if and only if G is a bipartite graph such that each vertex in the same part of bipartition has the same value $d_u^2 + t_u - 4d_u$, while $\mu_1(G) = \sqrt{D_2}$ if and only if G is a bipartite graph such that each vertex in the same part of bipartition has the same value $d_u^2 + t_u$. If G is a semiregular bipartite graph, then $\mu_1(G) = 2 + \sqrt{D_1} = \sqrt{D_2}$, where a graph G is semiregular bipartite means it is bipartite and each vertex in the same part of bipartition has the same degree. Note also that $\mu_1(P_4) = 2 + \sqrt{D_1} = 2 + \sqrt{2}$.

- I. Gutman, D. Vidović, and D. Stevanović, J. Serb. Chem. Soc. 67, 407 (2002).
- [2] J. S. Li and Y. L. Pan, Linear Algebra Appl. 328, 153 (2001).
- [3] O. Rojo, R. Soto, and H. Rojo, Comput. Math. Appl. 39, 1 (2000).
- [4] I. Gutman and K. C. Das, MATCH Commun. Math. Comput. Chem. **50**, 83 (2004).
- [5] R. Merris, Linear Algebra Appl. 285, 33 (1998).

Example: Let H be the graph obtained by adding two non-adjacent edges to a $K_{1,5}$. For P_5 and H, the actual values of μ_1 and the bounds (7), (8), $2 + \sqrt{D_1}$ and $\sqrt{D_2}$ give the following results (rounded to three decimal places):

	μ_1	(7)	(8)	$2+\sqrt{D_1}$	$\sqrt{D_2}$
$\overline{P_4}$	3.414	3.500	3.500	3.414	3.742
Н	6.000	6.800	6.667	6.583	6.708

Acknowledgement

This work was supported by the National Natural Science Foundation of China (10201009) and the Guangdong Provincial Natural Science Foundation of China (021072).

- [6] J.S. Li and X.D. Zhang, Linear Algebra Appl. 285, 305 (1998).
- [7] Y. L. Pan, Linear Algebra Appl. 355, 287 (2002).
- [8] M. N. Ellingham and X. Y. Zha, J. Combin. Theory Ser. B 78, 45 (2000).
- [9] R. Merris, Linear Algebra Appl. **197 198**, 143 (1994).
- [10] Y. B. Zou, J. L. Shu, and R. K. Wen, J. East China Norm. Univ. Natur. Sci. Ed. 2002, 18 (2002).
- [11] W. N. Anderson and T. D. Morley, Linear and Multilinear Algebra 18, 141 (1985).